Vasopressors and Inotropes

Outline
- Principals of Use for Vasopressors and Inotropes
- Adrenergic Receptor Review
- Vasopressors
- Inotropes

Case Presentation
- 68 YOM with CC of weakness and fever
- Vitals: T 39.1 RR 24 HR 108 PO2 95% BP 80/50
- CXR: Bilateral infiltrates; EKG Sinus Tach
- Medications given in ED
 - 2L of 0.9% NS
 - Acetaminophen 650mg supp
 - Ceftriaxone and Azithromycin
- Vitals: T 38 RR 26 HR 120 PO2 93% BP 70/40
- What to do next?

Indications for Vasopressors
- Hypotension may result from:
 - Hypovolemia
 - Cardiogenic
 - Distributive

- Vasopressors are indicated for:
 - SBP decrease of 30mmHg from baseline or
 - MAP <60 mmHg and
 - Evidence of organ dysfunction due to hypoperfusion

- Hypovolemia must be corrected first

Vasopressors and Inotropes
- What is the difference between a vasopressor and an inotrope?
- Vasopressors induce vasoconstriction and thereby increase mean arterial pressure (MAP)
- Inotropes increase cardiac contractility

Principles of Use for Vasopressors and Inotropes
- Use of vasopressors and inotropes is guided by three fundamental concepts:
 - One drug, many receptors
 - Dose–response curve
 - Direct versus reflex actions

- Central venous catheter preferred
Principles of Use for Vasopressors and Inotropes

- Choice of an initial agent should be based upon the suspected underlying etiology of shock.
- Dose should be titrated up to achieve effective BP or end-organ perfusion.
- If maximal doses of a first agent are inadequate, then a second drug should be added to the first.
- Doses must be constantly titrated to adjust for tachyphylaxis and for changes in the patients clinical condition.

Volume Resuscitation

- Repletion of adequate intravascular volume, when time permits, is crucial prior to the initiation of vasopressors.
 - Vasopressors will be ineffective or only partially effective in the setting of coexisting hypovolemia.
- Fluids may be withheld in patients with significant pulmonary edema due to ARDS or CHF.

Vasopressors and Inotropes

- Receptor Physiology
 - Categories of receptors include
 - Alpha₁ adrenergic receptors
 - Beta₂ adrenergic receptors
 - Dopamine receptors

Alpha₁ Adrenergic Receptors

- Alpha₁ receptors are located in the vascular walls
 - Activation of these receptors leads to significant vasoconstriction
 - Are also present in the heart and can increase duration of contraction without increased chronotropic effects (clinical significance uncertain)

Beta–Adrenergic receptors

- Beta₁ receptors are located primarily in the heart
 - Activation of these receptors mediates increases in inotropic and chronotropic effects
- Beta₂ receptors are located primarily in blood vessels and lungs
 - Activation of these receptors leads to vasodilation and bronchodilation

Dopamine Receptors

- Dopamine receptors are present in the renal, mesenteric, coronary, and cerebral vascular beds.
 - Stimulation of these receptors induces vasodilation
Receptor Physiology Review

<table>
<thead>
<tr>
<th></th>
<th>Vasodilation</th>
<th>Vasoconstriction</th>
<th>Inotropic</th>
<th>Chronotropic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alpha</td>
<td>**</td>
<td>**</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beta</td>
<td></td>
<td>**</td>
<td>**</td>
<td></td>
</tr>
<tr>
<td>Beta</td>
<td>**</td>
<td>**</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dopamine</td>
<td>**</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Differentiating Shock States

<table>
<thead>
<tr>
<th>Shock state</th>
<th>PCWP</th>
<th>SVR</th>
<th>CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alcohol</td>
<td>↓</td>
<td>↑</td>
<td>↓</td>
</tr>
<tr>
<td>Hypovolemic</td>
<td>↓</td>
<td>↓+</td>
<td>↑</td>
</tr>
<tr>
<td>Cardiogenic</td>
<td>↑</td>
<td>↑↑</td>
<td>↓</td>
</tr>
<tr>
<td>Septic</td>
<td>↓</td>
<td>↓</td>
<td></td>
</tr>
<tr>
<td>a</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Adrenergic Agents

- Dopamine (Intropin®)
- Norepinephrine (Levophed®)
- Phenylephrine (Neosynephrine®)
- Epinephrine (Adrenaline®)

Dopamine

- Onset of Action: 5 Minutes
- Half-life: 2 Minutes
- Duration of Action: 10 minutes
 - If used in patients on MAO inhibitors, duration of action can be greater than 1 hour
 - 50% action due to ↑ in NE
- Wide inter-patient variability

Dopamine

- At 1–3 mcg/kg/min, it primarily activates the dopamine receptors
 - The “renal-dose” dopamine effect
- At 5–10 mcg/kg/min, it works primarily on Beta-1 receptors
 - Increased cardiac output
- At greater than 10 mcg/kg/min, it works primarily on alpha-receptors
 - Vasoconstriction

Dopamine

- Side Effects:
 - Splanchnic and gastric mucosal blood flow
 - Tachycardia
 - Atrial and Ventricular arrhythmias, especially at higher doses
Norepinephrine

- **Receptor Physiology**
 - Acts on both Alpha and beta, receptors
 - Potent vasoconstriction and less pronounced increase in cardiac output
 - Reflex bradycardia usually occurs in response to increased MAP, thus the mild chronotropic effect is canceled out.
 - Most commonly used to treat septic shock

Onset of Action:
- 1–2 Minutes

Duration of Action:
- 1–2 Minutes

Titrate every 5–10 minutes

- More potent than dopamine
- Dosing range of 2–30mcg/min

Side Effects:
- Slight ↓ in CI d/t ↑SVR
 - Although elevated SVR means increased cardiac afterload, studies show cardiac output is maintained in patients without pre-existing cardiac dysfunction.
- Vasoconstriction (elevated SVR)
 - Reflex bradycardia usually occurs in response to increased MAP, thus the mild chronotropic effect is canceled out.
 - No direct cardiac effects

Phenylephrine

- **Receptor Physiology**
 - Purely alpha-adrenergic activity
 - Vasoconstriction (elevated SVR)
 - No direct cardiac effects
 - Although elevated SVR means increased cardiac afterload, studies show cardiac output is maintained in patients without pre-existing cardiac dysfunction.

- **Onset of Action:**
 - 10–15 minutes

- **Duration of Action:**
 - 15 minutes

- **T1/2~ 3 hrs**
- Less potent vasoconstrictor than norepinephrine
- Dosing range 25–300mcg/min

- **Side Effects**
 - Reflex bradycardia secondary to peripheral vasoconstriction
 - Pulmonary edema

- **Ventricular arrhythmias**
Phenylephrine
- Indications for use:
 - Septic Shock
 - Can be effective in restoring perfusion in patients with septic shock refractory to dopamine & dobutamine.
 - May be a good selection for patients with tachyarrhythmias
 - Neurogenic Shock
 - Therapy of choice (based on underlying cause being low SVR)
 - Anesthesia induced hypotension

Epinephrine
- Receptor physiology
 - Potent beta1, adrenergic activity
 - Inotropic & chronotropic effects
 - Moderate Alpha and Beta2, activity
 - In low doses, alpha and beta, activity cancel each other out.
 - At higher doses, alpha-adrenergic effects predominate, producing elevated SVR along with increased cardiac activity

Epinephrine
- Onset of Action:
 - Rapid - 10-30 seconds
- Duration of action:
 - Less than 5 minutes
- Does cross the placenta and enter fetal circulation

Epinephrine
- Side Effects
 - Epinephrine infusion is associated with
 - increased myocardial oxygen consumption
 - increased systemic lactate concentrations
 - effects short-lived
 - No evidence of long-term effects
 - decreased splanchnic blood flow.

Epinephrine
- Indications for use:
 - Anaphylactic shock
 - primary agent
 - Septic shock
 - only used in patients unresponsive to all other pressors
 - Cardiogenic Shock
 - In patients with transplanted hearts due to denervation (no neuronal re-uptake)

Extravasation
- Image of extravasation on hand
Phentolamine
- Alpha blocker – vasodilation
- Useful to prevent tissue necrosis from alpha vasoconstrictor extravasation
 - 5mg phentolamine + 9ml sodium chloride
 - Give 1ml thru IV and then pull catheter
 - 0.25ml around the site with a TB needle
 - Elevate arm and apply warm pad

Inotropic agents
- Dopamine
- Dobutamine
- Milrinone

Dobutamine
- Receptor Physiology
 - Predominant Beta-1 receptor effect
 - increased inotropic and chronotropic effects
 - Beta-2 receptor effect
 - vasodilation (hypotension), bronchodilation
 - Net effect is increased cardiac output, with a small reduction in blood pressure

Dobutamine
- Onset of Action:
 - 2 Minutes, although peak effect often does not occur for up to 10 minutes
- Half-Life:
 - 2 Minutes
- No adjustments in dosage due to liver or renal disease
- Dose 2.5–20 mcg/kg/min

Side Effects:
- Tachycardia, arrhythmias, hypotension
- Nausea, Headache
- Does contain sodium bisulfite, and may cause allergic reactions in susceptible individuals
 - Sulfite allergies much less common than sulfate allergies

Milrinone
- Phosphodiesterase inhibitor
- Inotropic and vasodilatory actions
 - In many ways similar to dobutamine
 - much more expensive
 - Lower incidence of arrhythmias
 - Used in medically refractory CHF but vasodilatory properties limit use in hypotensive patients
 - Useful in patients to be continued on beta-blockers
Milrinone

- Onset of action 5–15 minutes
- Dosing
 - Load (optional) 50mcg/kg IV over 10 minutes
 - Maintenance infusion of 0.375–0.75mcg/kg/min
- Dose reduction for renal insufficiency
- Side effects
 - Hypotension
 - Arrhythmias
 - Hypokalemia

Vasopressin

- Antidiuretic hormone
- Catecholamine sparing effect in late septic shock
- Useful in combination with NE, Epi, or DA
- ACLS pulseless arrest algorithm

Ideal Vasopressor

- Maintain effective circulatory volume and renal blood flow
- Increase cardiac contractility
- Void of effects on HR
- Does not increase arrhythmia risks
- Tachyphylaxis is not a concern

Choice of Vasopressor

- Cardiogenic shock
 - Dobutamine / Norepinephrine
 - Dopamine
- Distributive
 - Septic
 - Norepinephrine
 - Dopamine
- Anaphylactic
 - Epinephrine